
Logic and Discrete Structures - LDS

Course 11 – First order logic

s.l. dr. ing. Cătălin Iapă

catalin.iapa@cs.upt.ro

Predicate logic - syntax
Formalization of natural language
Resolution
Proofs in Predicate Logic
Semantics in Predicate Logic

Logic: review

We use logic to rigorously express (formalize) reasoning.

Logic allows us to make demonstrations (inferences)

• from axioms (always true)

• and hypotheses (considered true in the given problem)

• using rules of inference (deduction)

p p → q
q modus ponens

Propositional logic cannot express everything

A classic example: (1) All humans are mortal.

(2) Socrates is human.

(3) So, (3) Socrates is mortal.

This is a syllogism (pattern of inference rule)

classical logic: Aristotle, Stoics

It looks like modus ponens

• but the premise in (1) ("all men")

• is not the same as (2) (Socrates, a certain man)

We could rephrase (1): If X is human, then X is mortal.

more precisely: For any X, if X is human, then X is mortal.

Modern logic: predicate logic (first-order logic)

Gottlob Frege, Charles Peirce (19th century)

We need more expressive formulas

Formulas consist of predicates linked by logical connectors

∀x ((folder (x) ∧ x ≠ root) → contains(parent(x), x))

Instead of propositions (a, p, q) we have predicates : file(x),
contains(x, y)

A predicate = a statement relative to one or more variables,
which, by giving values to variables, can take the value true or
false.

Predicates have arguments terms: variables x / functions: parent(x)

intuitive: represent objects/notions and functions in the universe

New: quantifiers appear: ∀ (any), ∃ (exist)

Define first-order logic

Syntax of predicate logic: Terms

We define, structurally recursively, the notions of term and formula:

Terms

• variable v

f (t1, · · · , tn) with f n-ary function and t1, · · · , tn terms

Exemple: parent(x), cmmdc(x, y), max(min(x, y), z)

• constant c: special case, function of zero arguments

Syntax of predicate logic: formulas

Formulas (well-formed formulas):

• P(t1, · · · , tn) with P predicate of n arg. And t1, · · · , tn terms

Exemple: contains(empty, x), divide(cmmdc(x, y), x)

• proposition p: particular case, predicate of zero arguments

¬α

α → β

∀v α

where α is a formula

with α, β formulas

with variable v, α formula: universal quantification
Exemple: ∀x ¬contains(empty, x), ∀x ∀y divide(cmmdc(x, y), x)

t1 = t2 with t1, t2 terms (in first-order logic with equality)
Exemple: min(x, min(y, z)) = min(min(x, y), z)

About quantifiers. Existential quantifier ∃

Denote:
def

∃xϕ = ¬∀x (¬ϕ) ϕ - a formula

There are x for which ϕ is true ↔ not for every x ϕ is false. The two

quantifiers are dual. We can also write ∀xϕ = ¬∃x (¬ϕ)

The quantifiers have higher precedence than the connectives ¬, ∧, →

⇒ if the quantified formula has ∧, ∨, → we use parentheses:

∃x (P(x) → Q(x)) ∀y (Q(y) ∧ R(x, y))

Other notation: dot . quantifier applies to all the rest of the formula,

up to the end or closed parenthesis

P(x) ∨ ∀y.Q(y) ∧ R(x, y) (R(y) ∨ ∃x.P(x) → Q(x)) ∧ S (x)

Distributivity of quantifiers to ∧ and ∨

The universal quantifier is distributive to the conjunction:

∀x (P(x) ∧ Q(x)) ↔ ∀x P(x) ∧ ∀x Q(x)

but the existential quantifier is NOT distributive to the conjunction:

∃x (P(x) ∧ Q(x)) ↮ (∃x P(x) ∧ ∃x Q(x))

we have implication →, but not the converse, it may not be the
same x !

Dual, ∃ is distributive to disjunction:

∃x P(x) ∨ ∃x Q(x) ↔ ∃x.P(x) ∨ Q(x)

∀ is NOT distributive to disjunction. We just have:

∀x P(x) ∨ ∀x Q(x) → ∀x.P(x) ∨ Q(x)

Predicate logic - syntax
Formalization of natural language
Resolution
Proofs in Predicate Logic
Semantics in Predicate Logic

Formalising natural language

Formulas contain: variables, functions, predicates.

• Verbs become predicates (as in natural language):

buys(X , Y), subtracts(X),

• Subject and (in)direct complements: predicate arguments

• Attributes (properties) become predicates about argument-values

glad(X), golden(Y)

Variables in formulas can take values of any kind from the universe

• Categories also become predicates, with object argument
of that kind

child (X), notebook(X)

• Single entities become constants:

mary, emptyset, santaclaus

Example of formalisation (1)

1. Each investor bought shares or bonds.

Quantifiers introduce variables with arbitrary values from the
universe
⇒ impose categories by additional predicates
⇒ introduce a predicate inv (X) (X is investor)

For any X, if X is investor, it has done something

∀X.inv (X) → what X does

What does it say about the investor? Is there anything he bought
∀X.inv (X) → ∃ C. bought(X , C) ∧ what we know about C

∀X.inv (X) → ∃ C. bought(X , C) ∧ (shares(C) ∨ bonds (C))

Sursa: http://www.cs.utexas.edu/users/novak/reso.html

http://www.cs.utexas.edu/users/novak/reso.html

Example of formalisation (2)

2. If the Dow Jones falls, all shares except gold fall.

The Dow Jones index is a single notion ⇒ we use a constant dj
alternatively: we could also use a sentence falldj

fall(dj) → what happens

fall(dj) → ∀ X. conditions for X → fall(X)

fall(dj) → ∀ X. shares(X) ∧ ¬gold (X) → fall(X)

Example of formalisation (3)

3. If the Treasury increases interest, all bonds fall.

increasesinterest→ ∀ X.bonds (X) → fall(X)

Interest is the only thing in the problem that increases ⇒

alternative sentence: a constant interest + predicate increases

increases(interest)

Example of formalisation (4)

4. Any investor who bought something that decreases is not happy.

∀X.inv (X) → what we know about X

∀X.inv (X) → condition for X → ¬happy(X))

∀X.inv (X) → (∃ C.bought(X , C) ∧ decreases(C)) → ¬happy(X)

Example of formalisation (5)

5. If the Dow Jones index falls and the Treasury raises interest

rates, all the happy investors have bought a few shares of gold.

fall(dj) ∧ increasesinterest → what happens

fall(dj) ∧ increasesinterest →

∀ X.inv (X) ∧ happy(X) → what we know about X

fall(dj) ∧ increasesinterest →∀ X.inv (X) ∧ happy(X) →
∃ C.bought(X , C) ∧ shares(C) ∧ gold (C)

Beware of quantifiers!

The universal quantifier ("all") quantifies an implication: All

students are young people

,student ⊆ young
∀x.student(x) → young(x)

Common error: ∧ instead of →: ∀x.student(x) ∧ young(x)

Anyone/anyone in the universe is both a student and a young!

The existential quantifier ("some", "exists") quantifies a conjunction.

There are student prize winners.
∃x.winner(x) ∧ student(x)

Winner ∩ Student ≠ ∅

Common error: → instead of ∧: ∃x.winner(x)→ student(x)

It's true if there is a non-premium! (false implies anything)

Predicate logic - syntax
Formalization of natural language
Resolution
Proofs in Predicate Logic
Semantics in Predicate Logic

After translation into logic, we can prove it!

Having an infinity of interpretations (values in the universe,

functions, values for relations/predicates), we cannot write truth

tables.

But we can make demonstrations (inferences) according to rules

of inference (purely syntactic), as in propositional logic.

Demonstration by resolution method

A formula is valid if and only if its negation is a contradiction.

We can prove a theorem by indirect proof (reduction to the absurd)

by showing that its negation is an (unfeasible) contradiction.

Let the hypotheses A1, A2, . . , An and conclusion C .

Let the theorem A1 ∧ A2 . . . ∧ An → C

i.e.: assumptions A1, A2, . . . together imply conclusion C
Negation of implication: ¬(H → C) = ¬(¬H ∨ C) = H ∧ ¬C

So we show that A1 ∧ A2 . . . ∧ An ∧ ¬C is a contradiction (indirect

proof: true hypothesis + false conclusion is impossible)

We show that a formula is a contradiction by the resolution method.

Resolution in propositional calculus

Resolution is a rule of inference that produces a new clause

from two clauses with complementary literals (p and ¬p).
p ∨ A ¬p ∨ B

A ∨ B ,resolution

"From clauses p ∨ A and ¬p ∨ B we deduce/derive clause A ∨ B"

Clause obtained = resolvent of the two clauses with regard to p

Exemple: rezp (p ∨ q ∨ ¬r, ¬p ∨ s) = q ∨ ¬r ∨ s

Modus ponens can be seen as a particular case of resolution:

p ∨ false ¬p ∨ q

false ∨ q

Resolution example (1)

(a ∨ ¬b ∨ ¬d)
∧ (¬a ∨ ¬b)
∧ (¬a ∨ c ∨ ¬d)

b negated
b negated

∧ (¬a ∨ b ∨ c) b positive

We take a sentence with both polarities (b) and construct solvers

rezb (a ∨ ¬b ∨ ¬d, ¬a ∨ b ∨ c) = a ∨ ¬d ∨ ¬a ∨ c = T
rezb (¬a ∨ ¬b, ¬a ∨ b ∨ c) = ¬a ∨ ¬a ∨ c = ¬a ∨ c

We add the new solvers (ignore T); we remove the old clauses with b
(¬a ∨ c ∨ ¬d)

∧ (¬a ∨ c)

We can no longer create solvers. We have no empty clause.⇒ the

formula is satisfiable, e.g. with a = F. Or with c = T.

Resolution example (2)

a
∧ (¬a ∨ b)
∧ (¬b ∨ c) c positive

c negated∧ (¬a ∨ ¬b ∨ ¬c)

We apply the resolution after c, we have one pair of clauses:
rezc (¬b ∨ c, ¬a ∨ ¬b ∨ ¬c) = ¬b ∨ ¬a ∨ ¬b = ¬a ∨ ¬b

We remove the two clauses with c and add the new clause:

 a
∧ (¬a ∨ b)
∧ (¬a ∨ ¬b)

We apply the resolution to b:
rezb (¬a ∨ b, ¬a ∨ ¬b) = ¬a ∨ ¬a = ¬a

Remove the two b clauses, add the new clause:
a

∧ ¬a

We apply the resolution after a: reza(a, ¬a) = F (empty clause)

So the original formula is a contradiction (it's infeasible).

Applying resolution in propositional calculus

Starting from a formula in conjunctive normal form (CNF),

we add resolvents, trying to get the empty clause:

We choose a sentence p and add all resolvents relative to p: from
m clauses with p and n clauses with ¬p, we create m - n
resolvents we have removed p ⇒ we delete the original m+n
clauses

If any solver is empty clause, the formula is infeasible

If we can't create any more resolvers (literals have single
polarity), the formula is satisfiable (make T all remaining literals)

The number of clauses can increase exponentially (problematic!)

Resolution: from sentences to predicates

In predicate logic, a literal is not a sentence, but a predicate

not just p and ¬p, but P(arg 1) and ¬P(arg 2) (different arguments)

To derive a new clause from A ∨ P(arg 1) and B ∨ ¬P(arg 2)

we must try to bring the arguments to a common expression.

We will have clauses with universal quantified default variables can
take any value ⇒ we can substitute them with terms

Substitutions and mergers of terms

A substitution is a function that associates terms with variables:

{x1 '→ t1, . . . , xn '→ tn}

Two terms can be unified if there is a substitution that makes them
equal

f (x, g (y, z), t){x '→ h(z), y '→ h(b), t '→ u} = f (h(z), g (h(b), z), u)

Unification rules

A variable x can be unified with any term t (substitution) if x does not
appear in t (otherwise, substituting gives an infinite term)

so no: x with f (h(y), g (x, z))

Two terms f (...) can be unified only if they have the same function,
and the arguments (terms) can be unified (position by position)

Two constants (functions with 0 arg.) ⇒ unified if they are identical

Resolution in predicate calculus

Either clauses: A with positive P(...) and B with ¬P(...) (negated)
Example:

A: P(x, g (y)) ∨ P(h(a), z) ∨ Q(z)

B: ¬P(h(z), t) ∨ R(t, z)

We choose some (≥ 1) P(...) from A and some ¬P(...) from B.

Rename common variables (not related between A and B)

A: P(x, g (y)) ∨ P(h(a), z) ∨ Q(z) B: ¬P(h(z2), t) ∨ R(t, z2)

We unify (all at once) only those P(...) in A and ¬P(...) in B chosen

{P(x, g (y)), P(h(a), z), P(h(z2), t)} x '→ h(a); z2 '→ a; z, t '→ g (y)

We eliminate P(...) and ¬P(...) chosen from A ∨ B. We apply the

substitution resulting from unification and add the new clause to the
list of clauses.

Q(g (y)) ∨ R(g (y), a)

We keep the original clauses, they can be used with other predicate
choices.

Resolution: in conclusion

Repeatedly generate new clauses (resolvers) by resolution with merging

If repeating yields the empty clause, the original formula is infeasible.

If we find no new resolvers, the original formula is satisfiable.

Recall: we started by trying to prove

A1 ∧ A2 ∧ ... ∧ An → C

by reduction to the absurd, denying the conclusion and showing that

A1 ∧ A2 ∧ ... ∧ An ∧ ¬C is a contradiction

The method of resolution is complete relative to the refutation for any
non-realizable formula, will arrive at the empty clause but cannot
determine the realizability of any formula

(there are formulas for which it runs to infinity)

Example of application of the
resolution

We resume the exercise formalised above.

We use () and not . to avoid mistakes when applying quantification.

A1: ∀X (inv (X) → ∃ C (cump(X, C) ∧ (act(C) ∨ oblig (C))))

A2: scadedj → ∀ X (act(X) ∧ ¬aur (X) → scade(X))

A3: creștedob → ∀ X (oblig (X) → scade(X))

A4: ∀X (inv (X) → (∃ C (cump(X, C) ∧ scade(C)) → ¬bucur (X)))

C : scadedj ∧ creștedob →
∀ X (inv (X) ∧ bucur (X) → ∃ C (cump(X, C) ∧ act(C) ∧ aur (C)))

We negate the conclusion at the beginning, before turning quantifiers!

¬C : ¬(scadedj ∧ creștedob →
∀ X (inv (X) ∧ bucur (X) → ∃ C (cump(X, C) ∧ act(C) ∧ aur (C))))

We remove the implication, take the negation down to the predicate

1.Remove the implication : A → B = ¬A ∨ B, ¬(A → B) = A ∧ ¬B

Any transformation in a formula does NOT affect what is outside of it!

In ∀x A, transforming however on A (→, ¬, ...) does NOT change ∀x

We take ¬ inside : ¬∀xP(x) = ∃x ¬P(x) ¬∃xP(x) = ∀x ¬P(x)

A1: ∀X (inv (X) → ∃ C (cump(X, C) ∧ (act(C) ∨ oblig (C))))
∀X (¬inv (X) ∨ ∃ C (cump(X, C) ∧ (act(C) ∨ oblig (C))))

A2: scadedj → ∀ X (act(X) ∧ ¬aur (X) → scade(X))
¬scadedj ∨ ∀ X (¬act(X) ∨ aur (X) ∨ scade(X))

A3: creștedob → ∀ X (oblig (X) → scade(X))
¬creștedob ∨ ∀ X (¬oblig (X) ∨ scade(X))

A4: ∀X (inv (X) → (∃ C (cump(X, C) ∧ scade(C)) → ¬bucur (X)))
∀X (¬inv (X) ∨ ¬∃ C (cump(X, C) ∧ scade(C)) ∨ ¬bucur (X))
∀X (¬inv (X) ∨ ∀ C (¬cump(X, C) ∨ ¬scade(C)) ∨ ¬bucur (X))

Remove the implication, take the negation in (cont.)

¬C : ¬(scadedj ∧ creștedob →
∀X (inv(X) ∧ bucur(X) → ∃C (cump(X, C) ∧ act(C) ∧ aur(C))))

¬C : scadedj ∧ creștedob ∧
¬∀ X (inv(X) ∧ bucur(X) → ∃C (cump(X, C) ∧ act(C) ∧ aur(C)))

scadedj ∧ creștedob ∧
∃X (inv(X) ∧ bucur(X) ∧ ¬∃C (cump(X, C) ∧ act(C) ∧ aur(C)))

scadedj ∧ creștedob ∧
∃X (inv(X) ∧ bucur(X) ∧ ∀C (¬cump(X, C) ∨ ¬act(C) ∨ ¬aur(C)))

Rename: unique names to quantified variables

3. We give unique names to the quantified variables in each formula

so that we can later remove the quantifiers. For example:

∀x P(x) ∨ ∀x ∃y Q(x, y) devine ∀x P(x) ∨ ∀z ∃y Q(z, y)

No need in our example:

A1: ∀X (¬inv (X) ∨ ∃ C (cump(X, C) ∧ (act(C) ∨ oblig (C))))

A2: ¬scadedj ∨ ∀X (¬act(X) ∨ aur (X) ∨ scade(X))

A3: ¬creștedob ∨ ∀X (¬oblig (X) ∨ scade(X))

A4: ∀X (¬inv (X) ∨ ∀C (¬cump(X, C) ∨ ¬scade(C)) ∨ ¬bucur (X))

¬C : scadedj ∧ creștedob ∧
∃X (inv(X) ∧ bucur(X) ∧ ∀C (¬cump(X, C) ∨ ¬act(C) ∨ ¬aur(C)))

Skolemization: eliminating existential quantifiers

4. Skolemization: in ∀x1...∀xn∃y , the choice of y depends on x1, . . . xn;

we introduce a new Skolem function y = g (x1, . . . , xn), ∃y disappears

A1: ∀X (¬inv (X) ∨ ∃C (cump(X, C) ∧ (act(C) ∨ oblig (C))))

C of ∃ depends on X ⇒ C becomes a new function f (X), ∃C disappears

∀X (¬inv (X) ∨ (cump(X, f (X)) ∧ (act(f (X)) ∨ oblig (f (X)))))

Attention! each ∃ quantifier gets a new Skolem function!

For ∃y outside any ∀, we choose a new Skolem constant

¬C : scadedj ∧ creștedob ∧ ∃ X (inv (X) ∧ bucur (X)
∧∀ C (¬cump(X, C) ∨ ¬act(C) ∨ ¬aur (C)))

X becomes a new constant b (depends on nothing), ∃X disappears

scadedj ∧ creștedob ∧ inv (b) ∧ bucur (b)
∧∀C (¬cump(b, C) ∨ ¬act(C) ∨ ¬aur (C))

Normal prenex shape. Eliminate universal quantifiers

5.Bringing universal quantifiers to the front: prenex normal form

6.A4: ∀X (¬inv(X) ∨ ∀C (¬cump(X, C) ∨ ¬scade(C)) ∨ ¬bucur

(X))

∀X ∀C (¬inv (X) ∨ ¬cump(X, C) ∨ ¬scade(C) ∨ ¬bucur (X))

6.Eliminate universal quantifiers

(become default, a variable can be replaced by any term).

A1: (¬inv (X) ∨ (cump(X, f (X)) ∧ (act(f (X)) ∨ oblig (f (X))))

A2: ¬scadedj ∨ ¬act(X) ∨ aur (X) ∨ scade(X)

A3: ¬creștedob ∨ ¬oblig (X) ∨ scade(X)

A4: ¬inv (X) ∨ ¬cump(X, C) ∨ ¬scade(C) ∨ ¬bucur (X)

¬C : scadedj ∧ creștedob ∧ inv (b) ∧ bucur (b)
∧(¬cump(b, C) ∨ ¬act(C) ∨ ¬aur (C))

Clausal form

7. We take the conjunction outside the disjunction (distributivity)

and write each clause separately (clause form, CNF)

¬inv (X) ∨ cump(X, f (X))

(1) ¬inv (X) ∨ act(f (X)) ∨ oblig (f (X)))

(2) ¬scadedj ∨ ¬act(X) ∨ aur (X) ∨ scade(X)

(3) ¬creștedob ∨ ¬oblig (X) ∨ scade(X)

(4) ¬inv (X) ∨ ¬cump(X, C) ∨ ¬scade(C) ∨ ¬bucur (X)

(5) scadedj

(6) creștedob

(7) inv (b)

(8) bucur (b)

(9) ¬cump(b, C) ∨ ¬act(C) ∨ ¬aur (C)

We generate resolvers down to the empty clause

We search for predicates P(...) and ¬P(...) and unify, obtaining solvers:

(11) ¬act(X) ∨ aur (X) ∨ scade(X)

(12) ¬cump(b, C) ∨ ¬act(C) ∨ scade(C)

(3, 6)

(10, 11, X = C)

(4, 7)(13) ¬oblig (X) ∨ scade(X)

Când unificăm, redenumim clauzele să nu aibă variabile comune:
(13) ¬oblig (Y) ∨ scade(Y) vom unifica cu (2), redenumim X

(14) ¬inv (X) ∨ act(f (X)) ∨ scade(f (X)) (2, 13, Y = X)

(15) ¬cump(b, f (X)) ∨ ¬inv (X) ∨ scade(f (X)) (12, 14, C = f (X))

(16) ¬cump(b, C) ∨ ¬scade(C) ∨ ¬bucur (b)

(17) ¬cump(b, C) ∨ ¬scade(C)

(18) ¬cump(b, f (X)) ∨ ¬inv (X)

(5, 8, X = b)

(9, 16)

(15, 17, C = f (X))

(1, 18, X = b)(19) ¬inv (b)

(20) ∅ (contradiction = success in indirect proof) (8, 19)

Predicate logic - syntax
Formalization of natural language
Resolution
Proofs in Predicate Logic
Semantics in Predicate Logic

Axioms of predicate calculus

A1: α → (β → α) (A1-A3 from propositional logic)

A2: (α → (β → γ)) → ((α → β) → (α → γ))
A3: (¬β → ¬α) → (α → β)
A4: ∀x (α → β) → (∀xα → ∀xβ)
A5: ∀xα → α[x ← t] if x can be substituted∗ by t in α
A6: α → ∀xα if x does not occur freely in α
∗Define: we can substitute the variable x with the term t in ∀yϕ if:

x does not occur freely in ϕ (the substitution has no effect) or
x can substitute with t in ϕ and y does not appear in t
(we cannot substitute related variables)

,In the logic with equality, we also add
A7: x = x
A8: x = y → α = β

where β is obtained from α by replacing any occurrences of x by y .

Rule of inference: modus ponens is sufficient:
A A → B

B

Deduction

Let H be a lot of formulas. A deduction (proof) from H is a

string of formulas A1, A2, - - - , An, such that ∀i ∈ 1, n

1. Ai is an axiom, or

2. Ai is a hypothesis (a formula from H), or

3. Ai follows by modus ponens from the previous Aj, Ak(j, k<i)

We say that An follows from H (it is deductible, it is a

consequence).

We denote:

H ⊢An

Other inference rules

∀x ϕ(x)

ϕ(c)
,universal instantiation (see A5)

where c is an arbitrary constant (not previously shown in the proof)

If ϕ is valid for any x , then also for an arbitrary value c.

ϕ(c)

∀x ϕ(x)
universal generalisation (see A6)

where c is an arbitrary value (does not appear in assumptions)

If ϕ is valid for an arbitrary value, it is valid for any x .

∃x ϕ(x)

ϕ(c)
existential instantiation

If a value with property ϕ exists, we instantiate it (with a new name).

ϕ(c)

∃x ϕ(x)
existential generalization

If ϕ is true for a value, there is a value that makes it true

Predicate logic - syntax
Formalization of natural language
Resolution
Proofs in Predicate Logic
Semantics in Predicate Logic

Semantics

We define the notions:

model

interpretation

universe

semantic consequence

How do we interpret a formula?

Intuitively, we find a meaning for each symbol in the formula:

An interpretation (structure) I in predicate logic consists of:

• a non-empty manifold U called the universe or domain of I

(the set of values that variables can take)

• for any constant symbol c, a value cI∈ U

• for any n-ary function symbol f , a function fI : Un → U

• for any n-ary predicate symbol P, a submultiplet PI ⊆ Un.

(an n-ary relation on U)

So we give an interpretation to each symbol in the formula.

An interpretation does not give values to variables (see later:

assignment).

Examples of interpretations

∀x ∀y ∀z.P(x, y) ∧ P(y, z) → P(x, z)

For example:

universe U = real numbers;

predicate P: relation ≤

transitivity

∃e∀x ¬A(x, e)

the existence of the empty set:

predicate A(x, y) e x ∈ y

Logical implication (semantic consequence)

Let H be a formula set and C a formula.

We denote I ⊨ H if I is a model for every formula in H.

We say that H implies C (H ⊨ C) if for any interpretation I ,

I ⊨ H implies I ⊨ C.

(C is true in any interpretation that satisfies all assumptions in H)

There are more expressive logics than first-order logic

The principle of mathematical induction is (despite the name)

a rule of deduction in the arithmetic theory of natural numbers

∀P[P(0) ∧ ∀k ∈ N.P(k) → P(k + 1)] → ∀n ∈ N P(n)

formula in 2nd order logic (quantification over predicates)

Logic has its limitations

The theory of natural numbers with addition (Presburger arithmetic)

is decidable (anything we can express about the addition of natural

numbers is provable).

But: we cannot express divisibility, prime numbers, etc.

Peano's arithmetic (with addition and multiplication) is richer

but it is undecidable: there are statements that cannot be decided

whether they are true or not.

Summary

We can translate (formalize) from natural language into first order
logic

We can prove theorems by indirect proof:

 negate the conclusion,

 transform to clause form (conjunction of disjunctions)

 by resolution method

 find a contradiction (empty clause).

Thank you!

Bibliography

The content of the course is based on the material from the
LSD course taught by Prof. Dr. Eng. Marius Minea and S.l. Dr.
Eng. Casandra Holotescu
(http://staff.cs.upt.ro/~marius/curs/lsd/index.html)

The logic questions at the beginning of the course were taken
from the Introduction to Logic course at Stanford University
(https://www.coursera.org/learn/logic-introduction)

	Slide 1: Logic and Discrete Structures - LDS
	Slide 2
	Slide 3: Logic: review
	Slide 4: Propositional logic cannot express everything
	Slide 5: We need more expressive formulas
	Slide 6: Syntax of predicate logic: Terms
	Slide 7: Syntax of predicate logic: formulas
	Slide 8: About quantifiers. Existential quantifier ∃
	Slide 9: Distributivity of quantifiers to ∧ and ∨
	Slide 10
	Slide 11: Formalising natural language
	Slide 12: Example of formalisation (1)
	Slide 13: Example of formalisation (2)
	Slide 14: Example of formalisation (3)
	Slide 15: Example of formalisation (4)
	Slide 16: Example of formalisation (5)
	Slide 17: Beware of quantifiers!
	Slide 18
	Slide 19: After translation into logic, we can prove it!
	Slide 20: Demonstration by resolution method
	Slide 21: Resolution in propositional calculus
	Slide 22: Resolution example (1)
	Slide 23: Resolution example (2)
	Slide 24: Applying resolution in propositional calculus
	Slide 25: Resolution: from sentences to predicates
	Slide 26: Substitutions and mergers of terms
	Slide 27: Resolution in predicate calculus
	Slide 28: Resolution: in conclusion
	Slide 29: Example of application of the resolution
	Slide 30: We remove the implication, take the negation down to the predicate
	Slide 31: Remove the implication, take the negation in (cont.)
	Slide 32: Rename: unique names to quantified variables
	Slide 33: Skolemization: eliminating existential quantifiers
	Slide 34: Normal prenex shape. Eliminate universal quantifiers
	Slide 35: Clausal form
	Slide 36: We generate resolvers down to the empty clause
	Slide 37
	Slide 38: Axioms of predicate calculus
	Slide 39: Deduction
	Slide 40: Other inference rules
	Slide 41
	Slide 42
	Slide 43: How do we interpret a formula?
	Slide 44: Examples of interpretations
	Slide 45: Logical implication (semantic consequence)
	Slide 46: There are more expressive logics than first-order logic
	Slide 47: Logic has its limitations
	Slide 48: Summary
	Slide 49
	Slide 50: Bibliography

